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Cooling processes for a ID structural ‘glass’ model 

Walter Kobt and Rolf Schilling$ 
Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland 

Received 27 March 1990 

Abstract. The dependence of the residual energy ere, on the cooling rate y is investigated 
numerically for a one-dimensional chain of classical particles with anharmonic competing 
interactions. Due to the complex landscape of the potential energy of the system, with 
exponentially many barriers and valleys, erer(y) shows a non-trivial behaviour. For large 
cooling rates erer is independent of y. In  the intermediate y-range some plateaux are found 
which can be understood by means of a simple double well potential and for small y we 
find a power-law behaviour for eres(y), which supports a conjecture by Grest et al. This 
power-law behaviour can be explained analytically by means of a kinetic king model and 
the correspondence of the exponents from the analytical theory and those from the 
simulation is fair for a certain range of the potential parameters. 

1. Introduction 

Experience shows that most materials become crystalline when cooled from the liquid 
phase sufficiently slowly. For cooling rates higher than a certain (material-dependent) 
value the final state will be an amorphous solid. Thus, concerning the phenomena of 
glass transition and the formation of order from disorder, the cooling rate dependence 
of the solidification process is of primary interest. 

To our knowledge only a few works have discussed this question up to now. Ritland 
[ 13 found experimentally that the glass transition point Tg depends logarithmically on 
the cooling rate y, a behaviour also found theoretically for several models [2,3].  
Although some experimental work has been done on investigating the final structure 
of various materials as a function of the cooling rate [4] no quantitative conclusions 
can be drawn to date. 

Theoretically also, rather simple quantities related to structural properties such as, 
for example, the residual energy eres( y )  or the residual entropy s,,,( y ) ,  are of interest. 
These quantities are defined as follows. Consider a system of N classical particles 
with potential energy V ( { x , } )  (x, is the position of the j th  particle) where V ( { x , } )  has 
no extrinsic built-in disorder. The ground state of such a system is believed to be 
periodic and usually V ( { x j } )  has several metastable configurations {x;”} and for glassy 
systems there may be even exponentially many. If the system is cooled from its liquid 
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phase to zero temperature it will relax to one of these metastable configurations and 
the final state will depend on the cooling rate. Then the residual energy is defined as 

where Eo is the classical ground-state energy. Thus ere, (or s,,, which is defined 
analogously) is a measure of the disorder present in the relaxed configuration and is 
expected to vanish for arbitrarily small y. 

From a mathematical point of view, finding the ground state in the presence of a 
huge number of metastable states is formally equivalent to a certain class of optimization 
problems which attracted much attention in the last few years (see, for example, the 
references in [5]). Much of this attraction comes from the fact that in 1983 Kirkpatrick 
er a1 proposed an algorithm, called simulated annealing, making such problems 
tractable at last [6]. Examples for this kind of optimization problems are spin glasses 
or the travelling salesman problem. The ground state of these problems is usually 
highly non-trivial, due to the extrinsic disorder, and thus generally not known, in 
contrast to the crystalline ground state of materials forming structural glasses. 

To carry out simulated annealing on a computer, knowledge of the functional 
dependence of eres on y is crucial, since it determines the amount of computer time 
required to approach the ground state. Based on several examples, Grest et a1 [7] 
recently conjectured that for not NP-complete problems: this dependence can be given 
asymptotically (i.e. y + O )  by a power law 

eres( Y) - Y~ p > o .  (2)  

However, a slower dependence is not ruled out, and indeed Ettelaie et a1 [9] found 
for s,,,(y) a logarithmic dependence for a I D  spin glass model (a  not NP-complete 
problem). But today it is not clear whether these authors really reached in their 
simulation the asymptotic regime, and therefore their conclusions concerning this point 
might be doubtful [7]. Thus, up to now no conclusive example is known for a not 
NP-complete problem showing a logarithmic dependence of, for example, the residual 
energy. For NP-complete problems a much weaker dependence than a power law is 
expected, such as, for example, 

eres(Y)  - (-In 5’0 (3)  

and has actually been found for various spin-glass models and the travelling salesman 
problem [7, IO]. Also, Morgenstern and Wurtz [ l l ]  found a slow cooling rate depen- 
dence of the total wire length connecting different parts of a chip (an NP-complete 
problem), but the dependence was of a more complicated type than (3). 

The conjecture by Grest et a1 was questioned by Huse and Fisher [12]. Assuming 
an ensemble of independent two-level systems with a broad distribution of parameters 
they found a logarithmic dependence for all dimensions, independent of whether the 
system is NP-complete or not. A similar behaviour was found by Langer et a1 for the 
entropy distribution of independent two-level systems [ 131. After this, Freund and 
Grassberger [ 141 re-examined one of the not NP-complete spin-glass models 

By definition, the amount of computer time needed to solve an NP-complete problem grows faster than 
any polynomial in N, where N is the number of variables for the problem [8]. 
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investigated previously by Grest er a1 and found their results better compatible with 
a logarithmic dependence. But, very recently Chakrabarti and Toral also found a power 
law for eres( y )  for three different not NP-complete spin-glass models [ 151. 

This discussion makes it obvious that no definite result for the y-dependence of 
eres for systems with extrinsic disorder has yet emerged. 

Recently we have calculated numerically e r e s ( y )  for a chain of particles with 
competing and anharmonic interactions [ 161. This model does not have any extrinsic 
disorder, but nevertheless some of its static properties resemble those of a glass [17]. 
Although this model (which is not NP-complete) does not possess a glass transition?, 
we expect eres to depend on y due to its complex potential energy landscape with 
exponentially many metastable configurations. Since the ground-state energy Eo is 
known exactly for this model, we do not have to extract Eo from the cooling data 
themselves to determine eres from equation (1). Thus, no uncertainty is introduced at 
this point as is the case for most spin-glass models for which Eo is not known exactly. 
Our calculations [ 161 showed evidence of a power law for eres( y )  with two different 
exponents j~ for intermediate and small values of y, respectively. For the intermediate 
range, this behaviour of eres was thought to be explained by the freezing of a certain 
type of two-level systems leading to a power law, while for small y this interpretation 
failed. Meanwhile numerical information obtained on a microscopic scale showed that 
the freezing for intermediate y is, however, not related to the two-level systems 
considered originally. Since the power law, equation ( 2 ) ,  is true only asymptotically, 
i.e. for y + 0, we have decided to extend our simulation to much smaller values of y ,  
which in the meantime has become possible due to better computer facilities available 
to us. The purpose of the present paper is to present these more elaborate results, 
which support the existence of an asymptotic power law, and to present an analytical 
calculation which corroborates our numerical findings. 

For the analytical approach we take advantage of the fact that the dynamics of the 
chain at low temperatures can approximately be described by a kinetic Ising model. 
With this in mind we have recently determined e r e s ( y )  for a one-dimensional king 
model with ferromagnetic nearest-neighbour coupling J and usual Glauber dynamics, 
but with an activated attempt frequency of the form a( T )  = cyo  exp(-B/k,T). An 
asymptotic analysis yields a power-law behaviour with exponent p = A/2(  B + A ) ,  where 
A = 43 is the excitation energy for a single spin flip with respect to the ferromagnetic 
ground state [ 191. This result cannot be explained by the freezing of independent 
two-level systems (which would yield j~ = A/B) but has to be interpreted as the result 
of diffusing domain walls separating the large domains of up and down spins which 
represent the relevant spin configurations at low temperatures. Unfortunately this 
analytical treatment of the cooling process cannot be extended to more general kinetic 
Ising models. Nevertheless, it will be shown below that a simplified approach, exploiting 
the picture of domain wall diffusion, leads to a power law for more general models 
too. This approach is similar to that recently used by Stinchcombe er a1 [20] for an 
Ising model with alternating nearest-neighbour interactions. 

We will proceed as follows. The next section presents our model, the connection 
of its dynamics to a kinetic Ising model and the details of our simulations. In section 
3 we will discuss our analytical approach leading to the power-law behaviour for the 

+ For finite cooling rates our model freezes at a finire temperature T,( y). In addition, we have found a 
Kohlrausch law for a relaxation function. However, non-Arrhenius behaviour of the corresponding relaxation 
time, characteristic for most glassy systems, has not been found [18]. 
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residual energy and compare these findings with those from the numerical simulation. 
A summary and conclusions are given in section 4. 

2. Model and cooling procedure 

The model investigated in this paper has been introduced recently to describe glass-like 
properties of quasi-one-dimensional materials. Here we will only sketch the main 
features of this model. Details can be found in [17, 181. 

2.1. Static properties 

We consider a chain of classical, identical particles with anharmonic on-site potential 
and harmonic nearest-neighbour interactions. The potential energy of the system is 
given by? 

cz 
, 2 

v( { x ~ } )  = - [ ( X, - a, - U-CT(X, ) I 2  - ( c - a, - u - ~ + ( x , )  )'I + - (x, + x,,. - b ) 2 )  (4) 

with xi  the displacement of the ith particle, C ,  > 0, and C2 # 0. Here a ( x )  stands for 
sgn(x-c)E {*1} and a,, b and c characterize the geometrical form of the potential. 
Thus the anharmonic on-site potential consists of two parabolae with equal second 
derivative C,  patched together at x = c. For a,, b and c in a certain range and 171 < 4, 
where 

C, with K = 1 +- 
2 cz r] =-K(1--) 

it can be shown that potential (4) has exponentially many metastable configurations 
x( a) = {xt( a)} which are in one-to-one correspondence with sequences a = { g J }  of 
pseudo spins aj = *l. For given a, x ( a )  is obtained in the thermodynamic limit by 

3)  

x , ( a )  = A +  B r] "U,+,. 
,=-X 

Neglecting a constant term, the energy of a metastable configuration follows from 
the Ising-like Hamiltonian: 

E ( a ) = J o  1 r ] i ' - J ~ , ~ , - h h ~ ( T ,  Jo < 0. (7) 
1 f J  I 

The constants A, B, h and Jo in (6) and (7) depend on the parameters a,, c, b and r] 

and can be found in [ 171. In the following we always choose C2 < 0, which implies r ]  > 0. 
From the above discussion it follows that for this model the conjgurational degrees 

of freedom, described by the Ising variables ul, can be separated exactly from the 
vibrational degrees of freedom. Thus changes of the configurational degrees of freedom 
correspond to spin flips. For transitions between two metastable configurations charac- 
terized by U and U' ,  a barrier has to be overcome. The smallest of these barriers are 
related to single spin flips, i.e. to transitions between 'neighbouring' configurations. 
Simulations have shown that these kind of spin flips are the only relevant ones [18]. 
If the nth spin flips, a barrier of height 

t The potential given by (4) is a slight modification of that considered in [ 171. 
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has to be passed ( Bmi, is the minimum barrier height for single spin flips). The energy 
difference between both metastable configurations is 

( 9 )  

Thus the potential energy landscape in configuration space possesses exponentially 
many two-level systems with an asymmetry A,, and barrier height b,. 

A, ( U )  = 4J0 + 2 C, u-u,, ( X, ( U )  - c ) .  

2.2. Dynamic properties 

For temperatures low compared with B,,, , the system will oscillate around a metastable 
configuration with a microscopic frequency fl - 10” s-I. Transitions {a#} + {ai} will 
occur with a frequency which is much smaller than R. If in addition we assume the 
relaxation rate into local equilibrium to be much larger than the spin flip rate we can 
expect subsequent spin flips to be uncorrelated. If we denote by p ( a ,  t )  the probability 
for having a configuration U at time 1, this Markov assumption leads to a master 
equation for p ( o ,  t ) :  

P ( a , t ) = - C w , (  . . . )  ar ) . . .  ) p (  . . . )  Ut ) . . . )  
I 

+I w , ( .  . . , -a,, . . . ) p ( .  . . , --U,, . . . , t ) .  (10) 

For the transition rates w , ( a )  we will use the transition state result [21]: 

Up to order 7, this can be written as 

w, (a) -a ,exp  p Jo+- ( c o s h p h - a , s i n h p h )  [ ( :21 
x [cosh2 p h v  - (v,-, + an-l) sinh p h v  cosh p h 7 +  a,-la,+l sinh’ Ph7l  

x[cosh2 K+a,-,a,,, s i n h ’ K ] [ l - ~ a , ( ~ , , - ~ + a ~ + ~ ) t a n h 2 K ]  (12) 
with K = p J  and J = 2/J0177. For h = 0 this can be further simplified to 

w,(a)~~,(T)[1+6(T)a,_~v,+~][i -~an(an- l+an+ l )  t anh2Kl  (13)  

where 

(14) 
Equation (13) represents the most general Glauber dynamics for a one-dimensional 
Ising model with nearest-neighbour coupling J, field h = 0, and fulfilling the condition 
of detailed balance [ 2 2 ] .  

a (  T )  = a. exp(-pIJol) cosh’ K S (  T )  = tanh’ K. 

2.3. Cooling procedure 

Since the energy E(u) of the metastable configurations depends only on the spin 
sequences U = {a,} (cf equation (7)), it is sufficient to investigate the freezing behaviour 
of the Ising spins to determine eres for the chain. The residual energy is then given by 

1 eres = lim lim - [ E ( { o i ( r ) } )  - E,] 
N - x  I-p. N 
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where 

U, ( t ) = (+ ( x, ( t ) ) = sgn( x, ( t ) - c ) . (16) 

Since the ground state is periodic [17] its energy E,, can be calculated easily from (7). 
Assuming the system to be self-averaging, eres can be written as follows: 

1 
eres = lim lim - [ ( E ) (  t )  - E,,] 

N-m I -=  N 

where 

In order to calculate ( E ) (  t ) ,  the magnetization ((+,,)( t )  and the correlation functions 
(c+,a,,,)(t) must be known. These quantities can be determined from the solution of 

d ” 
Y = 1,2, . . . (19) - dt((+n,(+n, . . .gnv)=-2 C ( ( + n I ( + n Z . . * ( + n , W n , ( ~ ,  T ( t ) ) )  

g = l  

with the corresponding equilibrium values as initial conditions [22]. This system in 
general gives rise to a hierarchy of coupled equations with time-dependent coefficients 
due to the time-dependent temperature. Its solution for the rates w , ( a )  given by (12) 
or (13) is not known except for S = 0. 

Analytically the cooling process will be described by a time-dependent temperature 
T ( t )  determined by: 

? = - 7 f ( T ( t ) )  (20) 
where y is the cooling rate andf(  T )  specifies the cooling scheme [19]. As we will see 
from the simulations, it is f(t) = T in our case. However, it has been shown that the 
residual energy is independent for a large class of functions f [ 12, 191. 

To determine E ( { a i (  t ) } )  in (15) we numerically integrated the equations of motion 

av 
ax, 

mx,+ yx,+-=O 

where m is the mass of a particle. Due to the frictional term the energy of the system 
decreases. The vibrational degrees of freedom can be regarded as a heat bath coupled 
to the Ising spins and by means of the decreasing vibrational energy the friction 
simulates a cooling procedure for the spins. 

We now give the relevant details of the molecular dynamics method used to integrate 
(21). Introducing scaled variables, we can set C ,  = m = 1 which leads a typical time 
scale of order 2.rr time units for the oscillation time of a particle in its on-site potential. 
The numerical algorithm we applied to solve the differential equations has been 
described elsewhere [18]. As step size we used A t  =0.025 time units. This value is 
larger than the one used in [ 181, because the accuracy of the integration algorithm is 
not so critical for the kind of questions studied here. The initial conditions in phase 
space were chosen such that the energy per particle was well above the highest barrier 
for single spin flips, thus allowing the system to move in phase space unhindered by 
the potential barriers. Equilibrium was achieved after about a few hundred time units 
(see also [18]). The system size was N = 5000 particles and sometimes N = 15 000 to 
check for finite-size effects. A cooling run was performed long enough to assure that 
the configurational degrees of freedom have become frozen, i.e. that the final tem- 
perature was much less than Bmi, ,  the minimum barrier height. 
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I 1 1 c 

I I I I I 
0 350 700 1050 1400 

f ( t i m e  units) 

Figure 1. Time dependence of the temperature for a damping constant y = 0.003. Para- 
meters: a+=5 .0 ,  a - = 0 . 2 ,  b = 1 1 . 7 ,  c=4.6 ,  Cz=-0.08, ~ = 0 . 0 9 6 a n d  h = O .  

The effect of this cooling scheme is shown in figure 1, which depicts the temperature 
T (defined via the kinetic energy) as a function of time for a small damping constant. 
The two straight lines are exponentials fitted to the data. It is clear that, except for a 
short intermediate time range, T( t )  is well represented by an exponential decline. For 
short times the decay rate seems to be a bit larger than y and for long times it is very 
near to y. The latter observation is easily understood since for large times the configur- 
ational degrees of freedom are frozen and the vibrational part behaves purely harmoni- 
cally. Note that the short intermediate time range, where T ( t )  does not decrease 
exponentially, is the time range where the system freezes. 

To get a feeling for the magnitude of the temperatures and cooling rates considered 
here, we can assume the following values for the parameters of the potential energy: 
unit of length = 1 A, force constant C,  = 0.65 kg s - ~ ,  mass m = 16 U.  At high tem- 
peratures (with respect to B,,,, the maximum barrier height for single spin flips) the 
particle had a RMS velocity of about 0.3 length x time-’ yielding a temperature of about 
45 K. B,,, , which depends on 7, is about 15-25 K. The lowest cooling rate y has been 
1.5 x time units-’ which correspond to about lo9 K s-I. 

3. Results 

The parameters of the potential energy (4) can be chosen such that the magnetic field 
h in (7) is zero. Since the dynamical behaviour of the chain for h = 0 differs very 
strongly from that for h # 0, the two cases will be treated separately. For all simulations 
we chose q > 0. 

3.1. h = 0 

Although the transition rates (13) are rather simple in this case, the set of differential 
equations (19) is still coupled. The only known example for which the hierarchy gets 
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decoupled and solvable is 6 = 0 [22,23]. Reiss has solved this case even in the presence 
of an arbitrary time-dependent temperature [24]. His result gives (umu,,)( t )  in terms 
of integrals involving T (  t ) .  Using this result one of us (RS) computed eres( y )  for a 
slow quench and an attempt frequency of the form a ( T )  = cyo exp(-PB) [19]. eres(y) 
was found to exhibit a power law with an exponent 

25 
B + 4 J ’  

If we insert the transition rates from (13)  into the coupled equations of motion for 
the correlation functions, an approximate solution can be obtained if we replace 
(~,,,(~,-~u,,u,,,+~)(t) ( m  f n )  by (a,,,u,,)(f). This approximation is exact for the equi- 
librium. The resulting differential equations for ((+,,,U,,) are identical with those cor 
S = O  considered in [19]. Therefore we obtain again a power law for eres(y). The 
exponent follows from (22) with B = IJol(l -477) and J=27,/JoI. This barrier height B 
is just Bmi, up to order 7. For the exponent we thus find 

477 
p=iTT7l. 

Another method for determining p has recently been introduced by Stinchcombe 
et a1 [20]. This approach is based on more physical considerations and exploits an 
idea proposed by Cordery et a1 for calculating critical dynamical exponents [25]. The 
idea of Stinchcombe e? a1 is as follows. For small cooling rates the system will fall out 
of equilibrium at a rather low temperature Tf. At low temperatures the predominant 
spin configurations consist of large domains of spins with equal sign separated by 
domain walls. The relaxation time T (  T f )  is now related to the diffusive motion of the 
walls. The mean distance between two walls is (( Tf), the correlation length. If r( Tf) 
denotes the rate for wall diffusion, then 7 ( T f )  is the mean time for a wall to move a 
distance (( Tf) (measured in lattice constants) which is: 

It is reasonable to assume that the system falls out of equilibrium at that temperature 
Tf for which (see [3, 191) 

7( Tf) = y - ’ .  ( 2 5 )  

Equations (24) and (25)  allow one to determine T,-(y). For the most general Ising 
model with bilinear and ferromagnetic interactions the residual energy is given by 

where J ,  is the nth nearest-neighbour coupling constant. Substituting Tf into this 
expression we obtain eres( y ) .  

Let us now apply this method to the original transition rates given by (13). Because 
for low temperatures the creation rate for pairs of walls is much smaller compared to 
the flip rate within a wall, it is the latter which determines r (cf also [ 2 5 ] ) .  The 
corresponding barrier height for moving the wall by one lattice constant is (use (6), 
(8) and A, B, Jo from [ 171) 

(27) B = lJ,, + O( ~ “ ~ f ) )  
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leading to 

Wf) = (yo exp(-PflJol). 

The correlation length is given by 

It is not difficult to show that for an Ising model with coupling constants J ,  > O  
( n  = 1 ,  . . . , r )  which decrease rapidly enough, A ,  is given at sufficiently low temperatures 
by 

From (24), (25), (28)-(31) we find that 

Since we have J,, = 21J01 7" > 0, the residual energy is given by 

eres = 21JoI C 7 " A n  
n 

which in leading order of A I  reduces to 

because A, - n A ,  for low 
get finally the power law+ 

eres  - Y 

(33) 

temperatures. Substituting A , (  TF) and Tf( y )  into (331, we 

4 7  
( 1  + ~ ) ~ + 4 7 7  * 

with P =  (34) 

Note that this result coincides with the result (23) in leading order of 7 and that for 
this result to hold Tf must be so small that the domains are much larger than a lattice 
constant, which requires 

Since k,Tf/IJoI - - l / h  y (cf equation (31)) we find an upper bound 

A = 0 ( 1 )  (37) 

such that (35) is guaranteed for y e  yc, which in turn implies that the power law holds. 
For given y the CPU time needed to do  a cooling run is O( y- ') .  Therefore, and because 
of (37) the asymptotic regime, where eres- yp, cannot be reached for very small 7. 

t Note that we neglect a term of order qC iT l '  which becomes arbitrarily small for y small. 
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Figure 2 illustrates this behaviour for a system of 400 particles. It shows the evolution 
of the pseudospins during a cooling run for two different 7 values but for the same 
cooling rate ( y = 0.000 33). For 7 = 0.277 (figure 2( a ) )  large domains are found at the 
end of the run, whereas for 7 = 0.034 (figure 2( b ) )  the domains in the final stage are 
much smaller. 

To determine eres(y) numerically we usually carried out the simulation for six 
different initial configurations in phase space for 3.3 x lop3 s y s 10 and for three initial 
configurations for y < 3.3 x lO-3 .  The resulting residual energies scattered a little (for 
fixed y )  but tests showed that the width of this scattering decreases if the size of the 
system was increased [21]. Thus eres(y) seems to become a sharp quantity in the 
thermodynamic limit. Figure 3 depicts eres( y )  for various initial configurations and 
shows the scattering of the data. Figure 4 shows eres(y), averaged over the different 
initial configurations, for different 7. 

It is clear from these figures that the global behaviour of eres(y) does not depend 
on 7 very strongly. For large y the function saturates because the system relaxes to a 
metastable configuration very near to its initial configuration. If we decrease y, eres( y )  
begins to decay and shows some plateaux. The explanation for these is given below. 
For still smaller y, eres( y )  turns over into an asymptotic behaviour which can be fitted 
by a power law (straight lines). Note that the range over which this fit is reasonable 

Figure 2. Spin configurations as a function of time for two different cooling runs with 
y=O.O0033. Parameters: a+=5.0,  a _ = 0 . 2 ,  b=11.7, h = O .  ( a )  ~ 2 3 . 1 9 4 ,  Cz=-0.17, 7 2  
0.277. (b )  ~ 2 4 . 8 7 5 ,  C,=-O.O32, 7=0.034. 
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I 
 IO-^ 10-~ io-' 1 10 

T 

Figure 3. Residual energy as a function of cooling 
rate. Different symbols correspond to different initial 
conditions. Parameters as in figure 1. 

3 
IO+ io-& 10+ io-2 IO-' 1 i o  

, , . . . .  I b )  
,,,,.... I-." ' 

. . I .  

. I S '  

1- 
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Figure 4. Residual energy, averaged over several 
initial conditions, for different 1) and h = O .  The 
straight lines represent the best power-law fit. Para- 
meters: a+=5.0 ,  a - = 0 . 2 ,  b=11.7 ,  C2: variable, c: 
such that h = 0. The 11 values chosen are: ( a )  7 = 
0.034,(6) v=O.O68,(c)  ~ = 0 . 1 1 7 , ( d ) 1 ) = 0 . 2 0 2 , ( e )  
1) = 0.277. 
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decreases with decreasing 7. This is due to the fact mentioned above that the cross-over 
to the power-law behaviour shifts to smaller values of y if 7 decreases (cf equation 
(37)). Therefore the result for p may be affected by a significant systematic error (of 
unknown size) for small 7, since we are not entirely sure that the asymptotic regime 
has already been reached. The numerical values for p, its error and the analytical value 
from (34) are given in table 1. Figure 5 shows the 7 dependence of p. For 0.048 6 7 s 
0.135 the deviation between the analytical and numerical result are quite small, i.e. 
less than 6%, whereas for 7 = 0.034 and 2 0.20 it is about 30%. The discrepancy for 
the smallest 7 value probably originates from not having reached the asymptotic regime 
yet. For larger 7 we have found that the temperature Tf( y )  at which the system freezes 
is comparable to or larger than Bmi,, even for the smallest y values (note that Bmi, 
vanishes for 7 + f ) .  Thus the Markov assumption leading to (10) might no longer be 
justified, and in addition the transition rates (13) could also be incorrect for this case. 

Although the numerical calculation can also be performed for 7 > i, (which was 
done for 7 --. 0.666, where a power law with p = 0.40 was found) the analytical treatment 
is now more difficult because the one-to-one correspondence between metastable 
configurations and spin sequences no longer holds. 

We have also plotted eres as a function of In(-In y )  (figure 6). This graph rules out 
a logarithmic dependence of eres on y as proposed by Huse and Fisher [12]. 

Table 1. Exponent fin",,,, statistical error Ap,,, (from the numerical simulation) and 
exponent filheu (from equation (34))  for different 7 and h = O .  

0.034 22 
0.048 35 
0.068 50 
0.096 12 
0.117 35 
0.135 35 
0.202 41 
0.277 40 

0.0853 
0.1473 
0.2051 
0.2467 
0.2666 
0.2869 
0.2742 
0.2737 

0.0032 
0.0012 
0.0032 
0.0016 
0.0016 
0.0008 
0.00 13 
0.0019 

0.1135 
0.1496 
0.1935 
0.2424 
0.2732 
0.2958 
0.3590 
0.4048 

I 
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Figure S. Exponent p as a function of q. The error bars show only the statistical errors 
of the fits, systematic errors may be larger. The solid curve represents the theoretical values 
from (34). Parameters as in figure 4. 
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Figure 6. In ere, as a function of In(-In y )  Parameters as in figure 4 Compare also figure 
4 ( d ) .  7 is chosen to be 1) =0.202. 

Let us finally come back to the plateaux found in e r e s ( y )  for y not too small. Here 
we will give only some rather qualitative arguments to explain these features. More 
detailed calculations can be found in [21]. To understand this phenomenon one has 
to know that for such large damping ( y  = 0.2) the particles oscillate only a few times 
in their local double well potential, crossing the point x = c only once or twice before 
they settle into one of the two wells. Take for simplicity an  ensemble of non-interacting 
particles moving in an  asymmetric double well potential. The distribution of the 
positions and  velocities should be given by the Gibbs distribution with a temperature 
which is not too large compared with the barrier height. Thus the distribution is peaked 
around both local minima. Therefore, and  because of the asymmetry, the RMS velocity 
is less for those particles moving in the upper well than those moving in the lower 
one. Due to the velocity-dependent friction, the energy dissipation is less for those 
particles with the lower velocity. For strong damping (i.e. y >  1) all particles stay in 
their initial well. If y is decreased (e.g. y = 1) some of the particles will move from 
the upper well to the lower one and fewer will move from the lower well to the upper 
one, because these particles lose their energy faster as they have a larger velocity. Thus 
there is a net flow from the upper to the lower well and eres decreases. If y is decreased 
further, a significant part of the particles from the lower well can overcome the barrier 
now and will be trapped in the upper well. This flow can compensate or  even 
overcompensate the flow from the upper to the lower well. Hence e r e s ( y )  will exhibit 
a plateau or may even be increasing in a certain range of y.  

If there is a hierarchy of local double well potentials, it may be possible that many 
different plateaux occur, as the location of a plateau depends on the parameters of 
the double well potential. We have not investigated this point in more detail. From 
the arguments just presented, we would expect such plateaux to occur in the case h # 0 
as well, as we will indeed see in the next section. 

3.2. h # 0 

In the following we will restrict ourselves to h > 0. Similar results are expected for h < 0. 
The analytical calculations in this case are much more complicated than those for 

h = 0 due  to the rather complex transition rates (cf equation (12)) .  Therefore we content 
ourselves with a very simple approximation for the analytical calculation of eres( y ) .  
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Using the transition rates (12), the differential equation (19) for (al)( t )  involves, 
besides (al), also (alul+,) for n = 1, 2 and (a,-lalul+l). Assuming ph >> 1 ,  we perform 
the simplest possible decoupling: 

(aral+n)=(al)*= 1-2& (38a) 

(a , - ,a ,~, , , )=(a,)~= 1 - 3 ~  (386) 

where E = 1 -(al)<< 1. Introducing this into the equation for (a,)( t )  yields a linear 
differential equation for E ( t )  from which we find after a lengthy calculation (see [21]) 
the relaxation time 

d 77 = a. exp(PB) (39) 

where 

1 
B=-[2150/(1 - 2 7 ) - h I 2  

4 1 5 ~ 1  
is the barrier (up to order 7) for flips . . .+ - + . . .+ . . . + + + . . . . From the criterion 
(25) we get 

exp (-Pr) - Y ” ~ .  (41) 

&(Tf) = 1-(ai)(Tf)-exp(-PrA) (42) 

A = 81 Jol 17 + 2 h (43) 

On the other hand, we know from an analytical calculation that 

with 

the asymmetry (up to order 7) between the configurations. . . + - + . . , + . . . + + + . . . . 
Taking into account only the nearest-neighbour interactions, we obtain from (7) 

and (17) for eres : 

when (38) is used. From (41), (42) and (43) we find again a power law for ere*( y )  with 
an exponent 

p =A/B. (46) 
This result agrees with that derived by Huse and Fisher for a single two-level system 
[12]. This is obvious since the mean-field approximation (38) reduces the problem to 
independent two-level systems. 

We must keep in mind that this result holds only when the magnetization at Tf is 
appreciable, which is true for Prh >> 1 .  If h << J ( J  = 215,171) there exists a range for y 
such that P,- (y)h  << 1 but Pr( y ) J  >> 1 .  This means that the system will freeze in before 
a significant magnetization has been built up, but where large domains already exist. 
In this case the whole freezing process must be described in the same way we did for 
the case h = 0 and therefore we find in this y range a power law with an exponent 
which is given by (34). Only for y values lying well below this y range (i.e. where also 
Prh >> 1 holds) will we find a power law with an exponent given by (46). 

This behaviour makes the numerical examination of a power law with p given by 
(46) rather difficult. The discussion above suggests choosing h /  J large. But in this case 
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we found that the finite chain relaxes to the ground state even for relatively large y. 
On the other hand, for h /  J small we will observe only the intermediate behaviour for 
eres (y )  given by (34). The asymptotic power law occurs at such small y values that 
they cannot be treated numerically. Figure 7 presents the results for ere& y )  for h > 0. 
For the small y-range we have fitted a power law. The exponents are given in table 2. 
For h / J  s 0.5 we found the final magnetization to be quite small and, as follows from 
table 2, the numerical exponent agrees quite well with ptheo = 0.218 for h = 0 and 
7 -0.0819 (equation (34)). 

For 0.5 < h / J  < 0.9 the correspondence between pnum and ptheo (equation (46)) 
seems to be fair and for h / J  > 0.9 the ground state was almost reached even for y 

I L 

t ,  , ,  F , ' " " ' I  ' " " " ' I  

1 0 - ~   IO-^ io- '  1 10 
1 7 

Figure 7. Residual energy ercr(y) for different h/27J0 and 7 =0.0819. Parameters: a+= 
5.009, A-  =0.201, b = 11.698, C, = -0.07, c: variable. Values chosen for k/27J0 are: ( a )  
0.100, ( b )  0.532, ( c )  0.996 and ( d )  1.924. 

Table 2. Exponent pnum, statistical error Aknum and exponent p,heo (from equation (46)) 
for different h/27J0 and 7 = 0.0819. 

hl277Jo Kn,, A P n u m  k h e o  

0.009 96 0.240 0.0034 0.982 
0.099 60 0.239 0.0071 1.045 
0.326 29 0.988 0.082 1.216 
0.532 37 1.134 0.016 1.389 
0.996 05 1.592 0.083 1.856 
1.923 41 1.877 0.073 3.350 
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values which were not very small. Thus no reasonable determination of the asymptotic 
behaviour could be made, and therefore no definitive conclusions can be drawn. 

4. Summary and conclusions 

We have studied the dependence of the residual energy eres on the cooling rate y for 
a chain of particles with anharmonic and competing interactions. This model does not 
contain any extrinsic disorder as most spin-glass models do. Nevertheless, its potential 
energy in configuration space exhibits a complex landscape. If the parameters of the 
model satisfy certain conditions all metastable states can be uniquely classified by 
Ising spin configurations. This correspondence has been used to describe the dynamics 
of the chain by a kinetic Ising model. Assuming a time-dependent temperature, we 
found a power law eres- y w  for the residual energy of this kinetic model. 

For vanishing magnetic field, p ( 7 )  was determined analytically by means of a 
method proposed recently for computing e r e s ( y )  for an Ising model with alternating 
nearest-neighbour interactions [20]. This method, which originally was introduced to 
compute the critical dynamical exponent z [ 2 5 ] ,  also allows one to show that p = z-’  

Our simulations support these analytical calculations in that we also find a power 
law. The range of y where this holds is between two and four orders of magnitude. 
This and the exclusion of a logarithmic dependence seems to confirm the power-law 
behaviour which we have found earlier [ 161. Comparing the r] dependence of p derived 
from the kinetic Ising model (equation (34)) with that of our simulations, a satisfactory 
agreement for r ]  < 0.15 is seen, whereas for r] > 0.15 significant deviations of about 
30% occur. This disagreement is not well understood. The numerical values of p for 
large r] seem to converge to an asymptotic value po = 0.27. A very similar value has 
also been found for a different set of parameters a, and b. 

For non-vanishing magnetic field the results for eres are less conclusive. Within a 
mean-field approximation we have found that the asymptotic behaviour of eres( y )  is 
determined by the freezing of a certain type of two-level systems. Again a power law 
follows for eres( y )  for which we also found evidence in our simulations. However, the 
analytically determined exponents agree with those determined numerically only for 
an intermediate range of h / J .  This is probably due to finite-size effects when h / J  is 
large, and to not having reached the asymptotic regime for h / J  small. 

Let us finally mention that there exist regions in y, for both h = 0 and h # 0, where 
eres is practically independent of y, i.e. there exist plateaux. These were attributed to 
the motion of the particles within their local and asymmetric double well potential in 
the case of not too small damping. 

In summary we can say that at least for h = 0 our numerical and analytical results 
confirm a power law for the residual energy and therefore support the conjecture by 
Grest et al [l]. The numerically obtained exponent was in satisfactory agreement with 
that derived from a kinetic Ising model, provided that r] < 0.15. 
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